Interdigital cell death can occur through a necrotic and caspase-independent pathway
نویسندگان
چکیده
Programmed cell death in animals is usually associated with apoptotic morphology and requires caspase activation. Necrosis and caspase-independent cell death have been reported, but mostly in experimental conditions that lead some to question their existence it in vivo. Loss of interdigital cells in the mouse embryo, a paradigm of cell death during development [1], is known to include an apoptotic [2] and caspase-dependent [3] [4] mechanism. Here, we report that, when caspase activity was inhibited using drugs or when apoptosis was prevented genetically (using Hammertoe mutant mice, or mice homozygous for a mutation in the gene encoding APAF-1, a caspase-activating adaptor protein), interdigital cell death still occurred. This cell death was negative for the terminal-deoxynucleotidyl-mediated dUTP nick end-labelling (TUNEL) assay and there was no overall cell condensation. At the electron microscopy level, peculiar 'mottled' chromatin alterations and marked mitochondrial and membrane lesions, suggestive of classical necrotic cell death, were observed with no detectable phagocytosis and no local inflammatory response. Thus, in this developmental context, although caspase activity confers cell death with an apoptotic morphotype, in the absence of caspase activity an underlying mechanism independent of known caspases can also confer cell death, but with a necrotic morphotype. This cell death can go undetected when using apoptosis-specific methodology, and cannot be blocked by agents that act on caspases.
منابع مشابه
Ficus auriculata (fig) Extracts Induced Cell Cycle Profile Changes and Apoptosis Through Caspase-Independent Pathway in Human Lung Adenocarcinoma Cell Line, A549
Background: Ficus auriculata (fig) has immense value of benefits with regards to their medicinal and therapeutic properties. It has been long used in traditional folk medicine, and one of the fruits mentioned in Al-Quran. Many scientific researches have proven the usage of this natural medicine in in vitro and in vivo studies, where anti-cancer is among of its recognized properties. Objective...
متن کاملNEMO Inhibits Programmed Necrosis in an NFκB-Independent Manner by Restraining RIP1
TNF can trigger two opposing responses: cell survival and cell death. TNFR1 activates caspases that orchestrate apoptosis but some cell types switch to a necrotic death when treated with caspase inhibitors. Several genes that are required to orchestrate cell death by programmed necrosis have been identified, such as the kinase RIP1, but very little is known about the inhibitory signals that kee...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملNecrotic Death Pathway in FAS Receptor Signaling
A caspase 8-deficient subline (JB6) of human Jurkat cells can be killed by the oligomerization of Fas-associated protein with death domain (FADD). This cell death process is not accompanied by caspase activation, but by necrotic morphological changes. Here, we show that the death effector domain of FADD is responsible for the FADD-mediated necrotic pathway. This process was accompanied by a los...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 9 شماره
صفحات -
تاریخ انتشار 1999